Tau et déficits cognitifs : les lymphocytes T en action !
La maladie d’Alzheimer (MA) est la plus fréquente des démences. Elle touche environ 900.000 personnes en France et plus de 25 millions dans le monde. La maladie d’Alzheimer est caractérisée par deux types de lésions : les dépôts amyloïdes formés de peptides Aβ et les dégénérescences neurofibrillaires dues à l’accumulation, dans les neurones, de protéines Tau hyperphosphorylées et agrégées. Cette pathologie Tau est intimement liée au développement des troubles cognitifs dans la MA mais les mécanismes sous-jacents demeurent encore assez peu connus. La pathologie Tau est également retrouvée dans d’autres maladies neurodégénératives familiales et sporadiques appelées Tauopathies.
Un projet coordonné par David Blum et Luc Buée du Centre de Recherche Jean-Pierre Aubert (UMR-S1172, Université de Lille, Inserm, CHU-Lille), en collaboration avec Stéphane Hunot et Cécile Delarasse de l’ICM ainsi que Guillaume Dorothée du Centre de Recherche St Antoine, démontre un rôle des lymphocytes T dans le développement des troubles cognitifs dans un modèle murin développant des lésions neurofibrillaires. Cette étude est publiée dans la revue Brain.
Dans un premier temps, cette étude démontre que la pathologie Tau promeut la production de molécules inflammatoires, les chimiokines, par les cellules microgliales, précédant l’infiltration de lymphocytes T dans les régions cérébrales affectées par cette pathologie Tau. Une infiltration similaire est retrouvée chez des patients présentant une tauopathie génétique.
Dans un second temps, ce travail démontre que l’élimination des lymphocytes T conduit à une disparition de leur infiltration cérébrale et une diminution des chimiokines. De plus, ce traitement améliore les fonctions cognitives chez les souris développant des lésions neurofibrillaires, suggérant un rôle instrumental de l’infiltration lymphocytaire et/ou des chimiokines dans les troubles cognitifs liés à la pathologie Tau.
Ces travaux sont les premiers liant pathologie Tau et lymphocytes T et démontrent un nouveau mécanisme physiopathologique de la maladie d’Alzheimer et des Tauopathies en général. Ces résultats ouvrent la voie vers de nouvelles approches thérapeutiques actuellement à l’étude.
Référence de l’article :
Cyril Laurent, Guillaume Dorothée, Stéphane Hunot, Elodie Martin, Yann Monnet, Marie Duchamp, Yuan Dong, François-Pierre Légeron, Antoine Leboucher, Sylvie Burnouf, Emilie Faivre, Kévin Carvalho, Raphaëlle Caillierez, Nadège Zommer, Dominique Demeyer, Nathalie Jouy, Veronique Sazdovitch, Susanna Schraen-Maschke, Cécile Delarasse, Luc Buée, David Blum. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy Brain (2016) aww270 DOI: http://dx.doi.org/10.1093/brain/aww270
Lien vers l’article: http://brain.oxfordjournals.org/content/early/2016/11/05/brain.aww270.long
Contact:
David Blum, david.blum@inserm.fr, Univ. Lille, Inserm, CHU-Lille, UMR-S 1172, Alzheimer and Tauopathies, Place de Verdun, 59045, Lille Cedex, France
Crédit image: David Blum
Syndrome autistique : un nouveau gène responsable identifié
La délétion du gène TSHZ3 responsable d’un syndrome autistique
Un consortium international, réunissant chercheurs et cliniciens autour des équipes de Laurent Fasano et de Lydia Kerkerian-Le Goff à l’Institut de Biologie du Développement de Marseille, identifie TSHZ3 comme un nouveau gène lié aux troubles du spectre autistique (TSA) et essentiel pour le développement des neurones de projection du cortex cérébral. Cette étude est publiée dans la revue Nature Genetics.
Les travaux princeps de l’équipe de Laurent Fasano sur TSHZ3 avaient décrit ce facteur de transcription à doigts de zinc comme indispensable pour la myogenèse de l’uretère ainsi que pour la structuration des circuits neuronaux contrôlant la respiration. La présente étude montre, chez l’homme et sur des modèles murins, l’existence d’un lien direct entre déficience de TSHZ3 et un syndrome incluant notamment traits autistiques et anomalies congénitales de l’appareil urinaire. La délétion de Tshz3 chez la souris affecte l’expression corticale d’un ensemble de gènes dont une proportion majeure des orthologues humains est associée aux TSA, incluant des marqueurs de l’identité moléculaire des neurones des couches profondes du cortex cérébral. Les souris hétérozygotes Tshz3 présentent des altérations de la transmission et de la plasticité au niveau de synapses établies par les neurones de projection des couches profondes du cortex cérébral. Ces travaux décrivent un syndrome autistique associé à la déficience de TSHZ3/Tshz3, lié à des anomalies du développement et du fonctionnement post-natal des neurones de projection du cortex cérébral. L’expression dès les stades embryonnaires de défauts du tractus rénal dus à cette déficience pourrait favoriser la détection et la prise en charge précoce de patients atteints d’un sous-type de TSA.
En savoir plus :
TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons
Caubit X, Gubellini P, Andrieux J, Roubertoux PL, Metwaly M, Jacq B, Fatmi A, Had-Aissouni L, Kwan KY, Salin P, Carlier M, Liedén A, Rudd E, Shinawi M, Vincent-Delorme C, Cuisset JM, Lemaitre MP, Abderrehamane F, Duban B, Lemaitre JF, Woolf AS, Bockenhauer D, Severac D, Dubois E, Zhu Y, Sestan N, Garratt AN, Kerkerian-Le Goff L, Fasano L. Nat Genet. 2016 Sep 26. doi: 10.1038/ng.3681.
Contacts:
Rétines artificielles : de sérieuses pistes pour une vision plus nette
Formidable défi thérapeutique, les prothèses rétiniennes, développées depuis une dizaine d’années, permettent à certaines personnes aveugles de percevoir des signaux lumineux, mais l’image restituée est encore loin d’être précise. En comparant, chez le rongeur, l’activité du cortex visuel générée artificiellement par les implants à celle produite par la « vision naturelle », des chercheurs du CNRS, du CEA, de l’Inserm, de l’AP-HM et d’Aix-Marseille Université ont identifié deux facteurs limitant la résolution des prothèses. À partir de ces résultats, ils ont pu améliorer la précision de l’activation prothétique. Ces travaux pluridisciplinaires, publiés le 23 août 2016 dans la revue eLife, ouvrent la voie à de nouveaux progrès pour les prothèses rétiniennes chez l’homme, dans le but d’améliorer la qualité de vie des patients implantés.
Voir le communiqué de presse CNRS
Un anticorps-médicament contre la sclérose en plaques
Une équipe de l’Inserm (Unité 919 « Sérine protéases et physiopathologie de l’unité neurovasculaire »), dirigée par Fabian Docagne, a développé un anticorps possédant des effets thérapeutiques potentiels contre la sclérose en plaques. L’étude, publiée dans Brain, ouvre la voie à une nouvelle stratégie pour lutter contre la maladie.
La sclérose en plaques est une maladie qui affecte le système nerveux central, en particulier le cerveau et la moelle épinière. Elle représente la cause la plus fréquente d’invalidité neurologique chez l’adulte jeune.
La maladie est considérée comme auto-immune car le système immunitaire, censé protéger l’organisme des agressions extérieures, attaque ses propres constituants. Les cellules immunitaires, en particulier les lymphocytes, entraînent la destruction de la gaine de myéline qui entoure et protège les prolongements (axones) des neurones. Cette démyélinisation, qui marque le début d’une dégénérescence de l’axone, perturbe alors la transmission de l’influx nerveux. Les lésions sous forme de « plaques » sont dispersées au niveau du cerveau et de la moelle épinière. Elles provoquent des symptômes qui varient beaucoup d’une personne à l’autre.
Le plus souvent, la maladie se manifeste par poussées, avec l’apparition de troubles moteurs, sensitifs et cognitifs, qui régressent en quelques semaines. Mais au fil des années, ces symptômes peuvent évoluer vers un handicap irréversible. Les traitements actuels réduisent les poussées et améliorent la qualité de vie des patients, mais ne luttent pas contre la progression de la maladie.
Pour que les cellules du système immunitaire circulant dans le sang atteignent le système nerveux central, elles doivent franchir la barrière sang-cerveau (barrière hémato-encéphalique) et la barrière sang-moelle osseuse (hémato-médullaire).
Lors de travaux antérieurs sur un modèle d’accident vasculaire cérébral chez la souris, l’équipe de l’unité Inserm 919 a étudié un acteur participant à l’ouverture de la barrière hémato-encéphalique : le récepteur NMDA. En particulier, ils ont observé que le blocage de l’interaction de ce récepteur avec le tPA (une protéine de la famille des protéases à sérine) a des effets bénéfiques liés au maintien de l’intégrité de la barrière.
Dans cette étude, les chercheurs ont élaboré une stratégie pour bloquer l’interaction du tPA avec le récepteur, dans le cas de la sclérose de plaques. Ils ont développé au laboratoire un anticorps monoclonal (Glunomab®) dirigé contre le site spécifique du récepteur NMDA sur lequel se lie le tPA.
Dans des modèles cellulaires de barrières hémato-encéphalique et hémato-médullaire humaines, l’utilisation de cet anticorps empêche l’ouverture de la barrière en conditions inflammatoires, limitant le passage des lymphocytes. L’équipe a alors testé les effets thérapeutiques de l’anticorps dans un modèle expérimental de sclérose en plaques chez la souris. Après une injection intraveineuse du Glunomab®, la progression des troubles neurologiques, évaluée par un score clinique, est bloquée. Chez ces souris traitées, cet effet est associé à une diminution de l’infiltration des lymphocytes dans le tissu nerveux, et à une démyélinisation réduite.
En prévenant ainsi la destruction de la myéline par les cellules immunitaires, cette stratégie pourrait représenter une thérapie prometteuse pour lutter contre la sclérose en plaques.
Réf :
Macrez R, Ortega MC, Bardou I, Mehra A, Fournier A, Van der Pol SM, Haelewyn B, Maubert E, Lesept F, Chevilley A, de Castro F, De Vries HE, Vivien D, Clemente D, Docagne F.
Neuroendothelial NMDA receptors as therapeutic targets in experimental autoimmune encephalomyelitis.
Brain. 2016 Sep;139(Pt 9):2406-19.doi: 10.1093/brain/aww172.
Press release – Inserm press room :
An antibody-based drug for multiple sclerosis
Contact chercheur :
Fabian Docagne, PhD
Unité Inserm U919 « Serine Proteases & Physiopathology of the Neurovascular Unit » (SP2U), Centre Cyceron
Alzheimer : importance des récepteurs de l’adénosine
Plasticité synaptique, mémoire et récepteurs de l’adénosine aux stades précoces de la maladie d’Alzheimer.
Les troubles de la mémoire sont au centre de la maladie d’Alzheimer (MA). Dès les stades précoces de la maladie, les personnes ont du mal à assimiler de nouvelles informations. Le travail publié dans Nature Communications concerne les mécanismes synaptiques à la base de l’acquisition d’une mémoire de type épisodique dans la MA. Il a été réalisé principalement par Silvia Silva, étudiante en thèse dans le laboratoire de Christophe Mulle à l’Institut Interdisciplinaire des Neurosciences.
Dans l’hippocampe, les circuits synaptiques formés par les interconnections réciproques entre neurones de la région CA3 forment un réseau “attracteur” qui serait capable d’encoder rapidement et ensuite de restituer une information mnésique de type épisodique. L’encodage nécessite un changement de l’efficacité de certaines des connections synaptiques formant en quelques minutes une trace physique plus ou moins durable de cette mémoire. Le travail de l’équipe de Christophe Mulle a montré que ce phénomène de plasticité synaptique dans CA3 est très fortement affecté dans un modèle murin de la MA. Ce déficit apparait à un stade très précoce, bien avant l’apparition des plaques amyloïdes qui constituent un des traits histopathologiques majeurs de la maladie chez l’homme. En parallèle, les souris modèles de la MA sont incapables d’acquérir rapidement une information contextuelle, comme par exemple la position d’objets dans une boite.
En cherchant à mieux comprendre les raisons du déficit de plasticité synaptique dans ce réseau “attracteur” et ses conséquences pour l’encodage rapide de la mémoire, Silvia Silva a identifié un acteur délétère majeur, les récepteurs de l’adénosine de type A2A. Ces récepteurs sont présents dans les synapses pathologiques à un niveau anormalement élevé. Le simple fait de bloquer génétiquement ou pharmacologiquement l’expression ou la fonction des récepteurs A2A dans les neurones de CA3 suffit à restorer la plasticité synaptique. Ces récepteurs surpexprimés de manière pathologique dans les synapses du réseau de CA3 empêchent la plasticité synaptique et participent sans doute au déficit d’encodage rapide de la mémoire dans ce modèle murin de la MA.
Ce qui est tout à fait intéressant, c’est que les récepteurs A2A ont pour antagoniste très sélectifs la caféine, à des doses qui correspondent à quelques tasses de café. De nombreuses études moléculaires et psychopharmacologiques ont établi un lien entre déficit cognitif et surexpression pathologique des récepteurs A2A dans différents modèles chez le rongeur en particulier dans les équipes de David Blum à Lille et Rodrigo Cunha au Portugal. Selon certaines études épidémiologiques, la consommation régulière de café constituerait une forme de protection contre la MA, cependant le faible nombre d’études sur les humains ne permet pas encore de statuer. Le travail publié par l’équipe de Christophe Mulle et ses collaborateurs donne une raison supplémentaire de prendre au sérieux les possibles bienfaits thérapeutiques d’antagonistes des récepteurs A2A ou tout simplement de la caféine, en particulier à un stade précoce du développement de la MA.
Viana da Silva, S. et al. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors. Nature Communications 7, 11915 (2016).
Fatigue cognitive et décisions économiques
Vous travaillez trop ? Vous dépensez plus !
Acheter le dernier smartphone ou économiser de l’argent pour partir aux Seychelles ?
Résister à la tentation d’une récompense immédiate est souvent indispensable pour atteindre nos objectifs à long terme. Et notre capacité à contrôler notre impulsivité est une des clefs de notre insertion sociale et de notre réussite professionnelle.
Et si nous avions un stock quotidien limité de self-control ? Une fois cette ressource épuisée, nous serions soumis à notre impulsivité et prendrions des décisions dénuées de toute rationalité !
C’est l’hypothèse qu’a testé l’équipe de Mathias Pessiglione en demandant à trois groupes de volontaires de se prêter à des études comportementales. Le premier groupe devait résoudre des exercices compliqués pendant plus de 6 heures. Pendant ce temps, le deuxième groupe était confronté à des exercices simples alors que le troisième groupe se divertissait en lisant ou en jouant à des jeux vidéos. A intervalles réguliers, les chercheurs demandaient aux participants de choisir entre une récompense immédiate, recevoir une petite somme d’argent tout de suite, ou une récompense à long terme, une plus grosse somme d’argent plus tard.
Les personnes soumises à des exercices difficiles ont choisi la petite somme tout de suite, c’est à dire qu’ils ont favorisé un choix impulsif à un choix plus profitable à long terme. Ainsi la « fatigue » cognitive nous entrainerait à faire des choix plus impulsifs.
La responsable ? Une petite région du cerveau située dans le cortex préfrontal et sollicitée à la fois lors de la réalisation de tâches complexes et de choix financiers. L’activité de cette région diminue avec la fatigue, or plus son activité diminue, plus le nombre de choix impulsifs augmente.
Ce travail met en évidence un mécanisme qui explique pourquoi, après une journée de travail intense, notre impulsivité augmente quand il s’agit de prendre des décisions économiques. Ces résultats ont des implications dans le domaine du management, en effet le nombre et la durée des pauses pendant le travail devraient être adaptées pour éviter la fatigue cognitive. Un travail trop intense a non seulement des répercussions sur nos décisions économiques mais peut entraîner, à terme, des conditions pathologiques comme le syndrome du burn-out.
Réf.:
Neural mechanisms underlying the impact of daylong cognitive work on economic decisions. Blain B, Hollard G, Pessiglione M. Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6967-72)
Cajal Course: Hippocampus, from circuit to cognition
CAJAL Neuroscience Training Courses
The Brain Prize course.
Hippocampus: from Circuits to Cognition
Over the past 50 years, major breakthroughs in understanding hippocampal connectivity and function have been done. Continued technological advances have opened new opportunities for the study of this brain area at the level of molecules, cells, and networks. The advanced CAJAL course will give promising young neuroscientists in-depth exposure to the breadth of research on the hippocampus, and will provide hands-on training in state-of-the-art methods used to study hippocampal function. Ultimately, the school will promote interactions between students and leading experts on hippocampal anatomy, physiology and function via lecture series.
Dates: 10-31 Oct. 2016
Venue: Bordeaux Neurocampus, France
Course directors:
• Jozsef CSICSVARI (Institute of Science and Technology, AT)
• Charan RANGANATH (University of California, US)
On-site chairs:
• Christophe MULLE (University of Bordeaux, FR)
• Mario CARTA (University of Bordeaux, FR)
Deadline: 31st July, 2016 (Brussels time, Midnight)
Caractériser la morphologie des neurones et des astrocytes in vivo par spectroscopie par résonance magnétique
Aborder la morphologie des cellules cérébrales, in vivo, de manière non-invasive reste un réel défi. Or, la morphologie des neurones et astrocytes est susceptible d’être altérée au cours de certaines affections, en particulier les maladies neurodégénératives. Il serait donc extrêmement pertinent de disposer d’une méthode d’imagerie non-invasive permettant d’accéder à ces caractéristiques morphologiques. Malheureusement, la finesse de la structure de ces cellules, ainsi que leur extrême imbrication, les placent bien en dessous de la résolution de toutes les techniques d’imagerie cérébrale.
Le groupe de Julien Valette (MIRCen) au CEA de Fontenay aux Roses a développé, dans le cadre d’un projet financé par le Conseil Européen de la Recherche (ERC), une stratégie pour quantifier certaines caractéristiques morphologiques des neurones et astrocytes, publiée en mai 2016 dans la revue PNAS. Cette méthode indirecte est basée sur la mesure, par des approches originales de spectroscopie par résonance magnétique in vivo, de la diffusion de molécules naturellement et spécifiquement présentes à l’intérieur des cellules, afin de « sentir » de l’intérieur la structure cellulaire contraignant la diffusion de ces molécules. Les données de diffusion sont ensuite modélisées, par simulations numériques dans des « cellules virtuelles » effectuées massivement sur processeur graphique, pour en extraire la complexité et la taille des cellules dans le volume cérébral étudié. La stratégie proposée, bien que nécessitant encore des étapes de validation, laisse ainsi entrevoir la possibilité de mesurer de manière non-invasive la morphologie des cellules du cerveau.
Référence de l’article : Palombo M, Ligneul C, Najac C, Le Douce J, Flament J, Escartin C, Hantraye P, Brouillet E, Bonvento G, Valette J. (2016) New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo. Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6671-6. doi: 10.1073/pnas.1504327113. Epub 2016 May 25.
Lien vers l’article (open access) : PNAS open access
Contact : Julien Valette, Laboratoire des Maladies Neurodégénératives / MIRCen, UMR9199 CEA-CNRS-Univ. Paris-Sud, I2BM, DRF, CEA, Fontenay aux Roses, France.
Crédit photo : Julien Valette/Marco Palombo
Retour sur les Journées thématiques de la Société des Neurosciences
Escale au bord de la Loire…
Les 24 et 25 mai derniers, plus de 200 participants ont assisté aux 2e Journées Thématiques de la Société des Neurosciences organisées à Tours par la Structure Fédérative de Recherches de Neuroimagerie Fonctionnelle de Tours-Poitiers. Ces journées se sont déroulées dans la salle Thélème de l’université François-Rabelais de Tours et étaient consacrées à « La plasticité cérébrale, de la recherche fondamentale à la clinique ». Vingt conférences, dont la prestigieuse Lecture Alfred Fessard donnée par Geneviève Rougon, ont été présentées et suivies par des chercheurs et des cliniciens, majoritairement issus des laboratoires français mais aussi par quelques collègues étrangers. Les discussions et les échanges ont été nombreux lors des pauses café et buffets et autour des quarante-sept posters principalement présentés par des étudiants. Dix d’entre eux ont été sélectionnés pour une présentation de leurs travaux sous la forme de communication-flash de 5 minutes.
Ces journées se sont terminées par une conférence à l’attention du public tourangeau au cours de laquelle Hervé Platel (Inserm Caen) a abordé la question : Arts, cerveau et vieillissement – de la musique pour bien vieillir ? De nombreux échanges ont eu lieu à l’issue de cette conférence, à laquelle ont participé environ 130 personnes.
Les organisateurs remercient chaleureusement la Société des Neurosciences pour leur avoir confié l’organisation de ces journées, et les nombreux sponsors pour leur indispensable soutien.
Les lauréats du prix de thèse de la Société des Neurosciences
Les trois lauréats du prix de thèse de la Société des Neurosciences ont reçu leur prix lors des 2e Journées Thématique organisées à Tours les 24 et 25 mai dernier. Ils ont brièvement résumé leurs travaux de thèse.
Mon projet de thèse a porté sur l’étude de la fonction de la protéine LGI1, dont le dysfonctionnement est responsable d’une épilepsie héréditaire du lobe temporal et d’épilepsies auto-immunes. Mes travaux de recherche ont consisté à déterminer la période développementale et les populations de neurones qui contribuent à la pathologie à l’aide de lignées de souris génétiquement modifiées. Mes résultats ont permis de démontrer que les neurones excitateurs jouaient un rôle majeur dans cette épilepsie, et que LGI1 était indispensable au maintien d’une excitabilité neuronale normale tout au long de la vie. De plus, j’ai montré que LGI1 est un acteur essentiel de l’élément présynaptique et que son absence entraîne une libération excessive de glutamate aux synapses excitatrices qui pourrait être à l’origine des crises d’épilepsie. La meilleure compréhension de la fonction de LGI1 devrait maintenant permettre d’identifier de nouvelles cibles thérapeutiques dans l’épilepsie.
Le cervelet joue un rôle déterminant dans l’apprentissage, le maintien de la posture et la coordination motrice. Au sein du réseau neuronal cérébelleux, les informations sensorielles convergent vers la cellule de Purkinje qui possède un rôle clé dans le traitement des informations. Il est donc important de comprendre comment la connectivité de celle-ci est modifiée durant un apprentissage moteur. Ma thèse a consisté à étudier les voies de signalisation moléculaire impliquées suite à l’activation de récepteurs pré- et/ou post-synaptiques durant des protocoles de plasticité synaptique à la synapse entre fibres parallèles et cellules de Purkinje. Ces résultats expérimentaux nous ont permis la confection d’un modèle mathématique qui prédit le signe de la plasticité synaptique à partir de patrons d’entrées arbitraires sur la cellule de Purkinje. L’ensemble de ces études permettra de mieux comprendre le mécanisme de stockage de l’information dans le cortex cérébelleux, et potentiellement d’identifier des cibles pharmacologiques permettant de résoudre ou de corriger des désordres cérébelleux.
De nombreuses études ont mis en évidence un rôle du sommeil dans la consolidation de la mémoire. Cette consolidation durant le sommeil serait permise par des répétitions des informations vécues lors de l’éveil. Il a été montré chez le rongeur que des cellules de lieu, qui s’activent de façon spécifique selon notre localisation dans l’espace, étaient réactivées durant le sommeil, comme si l’animal rejouait les trajectoires qu’il avait faites durant l’éveil. Nous avons utilisé ces réactivations des cellules de lieu afin de créer un souvenir artificiel entre un lieu et une récompense durant le sommeil, au moyen d’une interface cerveau-machine. La création de ce nouveau souvenir a permis de démontrer le rôle causal de ces neurones dans la navigation spatiale.