Divers

Colloque A2mcl maladie à corps de Lewy

L’A2MCL organise son troisième colloque annuel sur la maladie à corps de Lewy, les 24 et 25 novembre 2022 à Paris en visio-conférence et en présentiel à l’hôpital Necker.

Le colloque réunira le 25 novembre de 9H à 18H chercheurs, soignants, aidants et malades autour de 4 principales thématiques :

  • Le diagnostic de la MCL : diagnostic clinique, biomarqueurs (sanguins et céphalo-rachidiens), imagerie nucléaire.
  • La recherche médicale : dernières avancées sur les traitements et perspectives d’avenir.
  • L’éducation thérapeutique : patients, aidants, et soignants.
  • L’accompagnement au quotidien des aidants et des malades : témoignages, solutions et outils.

Le colloque sera précédé par une formation sur la maladie à corps de Lewy le 24 novembre de 17H à 20H en visio-conférence :

  • Description générale de la maladie.
  • Description des symptômes : troubles du comportement, du sommeil, cognitifs et moteurs.
  • Les critères de diagnostic.
  • Les traitements symptomatiques.

Gratuit en présentiel et en visio. Inscription obligatoire.

Plus d’informations

de Contributeur 22.09.2022 à 12h44

Sondage pour l’organisation des journées annuelles C-BRAINS

Le DIM C-BRAINS vise à renforcer l’attractivité et la visibilité des neurosciences et sciences cognitives en Ile de France.

Il rassemble plus de 200 équipes de recherche, 41 partenaires industriels et 19 associations.

Pour renforcer les échanges au sein de la communauté C-BRAINS, nous organisons 2 journées de rencontre, en région parisienne,  durant la semaine du 06 février 2023.
Afin de définir au mieux le programme de ces journées, nous souhaitons recueillir les attentes de l’ensemble de la communauté C-BRAINS via le formulaire ci-dessous :

https://forms.gle/zUXEQSyWApMUdwdB9

Nous avons probablement oublié des personnes donc nous vous remercions de diffuser le formulaire à l’ensemble des collègues qui portent un intérêt au projet C-BRAINS.

Nous vous joignons également le flyer du projet C-BRAINS.

L’avis de l’ensemble des partenaires compte !
Le formulaire sera clôturé le 30/09 à minuit.

Au nom du comité d’organisation de ces journées.

Sophie Bouton, Valérie Doyère, Grégory Gauvain, Sabir Jacquir

(Le formulaire sera clôturé le 30/09 à minuit).

de Clémence Fouquet 12h38

FORMATION DE LA MEMOIRE SOCIALE : PLASTICITES EN CASCADE DANS L’HIPPOCAMPE

La cognition sociale est une fonction importante pour de nombreuses espèces qui est altérée lors de maladies psychiatriques et neurodégénératives. Bien que l’hippocampe et en particulier la région CA2 soient connus pour jouer un rôle clé dans la formation de mémoire sociale, les mécanismes cellulaires impliqués ne sont pas connus.

Dans une étude récente réalisée sur des souris, nous décrivons comment deux plasticités synaptiques de la transmission inhibitrice dans CA2 pourraient être déclenchées afin de coder l’identité d’une nouvelle souris et d’en former une mémoire à long-terme.

Plus précisément, nous montrons comment l’exposition d’une souris à un nouvel individu induit tout d’abord une dépression à long-terme de la transmission inhibitrice des interneurones exprimant la parvalbumine par l’intermédiaire de récepteurs delta-opioïdes. La diminution de la transmission inhibitrice permet ensuite aux neurones principaux de CA2 de générer des potentiels d’actions et d’induire une deuxième dépression à long-terme de la transmission inhibitrice par l’activation des récepteurs cannabinoides de type I (CB1) sur les interneurones exprimant la cholécystokinine. Le blocage des récepteurs CB1 dans la région CA2 empêche complètement la formation de mémoire sociale. Par ailleurs, la plasticité dépendante des récepteurs CB1 est fortement diminuée sur un modèle murin de schizophrénie, qui a aussi un fort déficit de mémoire sociale. Enfin, une manipulation pharmacologique de l’excitabilité des neurones principaux de CA2, qui était connue pour améliorer la mémoire sociale sur ces souris, restaure aussi la plasticité induite par les récepteurs CB1.

Ces résultats montrent l’importance de l’interaction entre deux plasticités inhibitrices dans la formation de mémoire sociale et offrent de nouvelles perspectives de traitement dans des pathologies avec altération de la cognition sociale.

 

Légende de la figure:

En condition basale, la transmission synaptique entre les neurones pyramidaux CA3 et CA2 est dominée par une importante inhibition de type ‘feed-forward’ empêchant les neurones pyramidaux de CA2 de déclencher des potentiels d’action (PA). Lorsqu’une souris est exposée à une nouvelle souris, une dépression à long terme de la transmission inhibitrice des interneurones exprimant la parvalbumine (PV-IN) est induite par l’activation des récepteurs Delta-opioïdes (DOR-iLTD). Cette désinhibition permet aux PN de CA2 de générer des PA en réponse à l’activation des entrées de CA3. Après une exposition ultérieure à la nouvelle souris, les PN qui déclenchent suffisamment de PA expriment une deuxième iLTD médiée par l’activation des récepteurs cannabinoïdes de type I (CB1R-iLTD), ce qui augmente encore le déclenchement de PA dans ces PN.

 

Réference :

Sequential inhibitory plasticities in hippocampal area CA2 and social memory formation.

Loisy M, Bouisset G, Lopez S, Muller M, Spitsyn A, Duval J, Piskorowski RA, Verret L, Chevaleyre V. Neuron. 2022; 110(17):2854-66 doi: 10.1016/j.neuron.2022.06.013.

 

Contacts :

Vivien Chevaleyre / Rebecca Piskorowski: Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, 75014 Paris, France

Laure Verret: Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, 31062 Toulouse, France

 

English summary:

Social cognition is a key function for numerous species and is altered during several psychiatric and neurodegenerative diseases. While the hippocampus and in particular area CA2 are known to play a critical role in social memory formation, the underlying cellular mechanisms are not known.

In a recent study performed in mice, we describe how two synaptic plasticities of inhibitory transmission could be induced during the coding of a novel mouse and the formation of a lasting memory.

More precisely, we show how exposure to a novel mouse induces a long-term depression of inhibitory transmission form parvalbumin-expressing interneuron via activation of delta-opioid receptors. The resulting dis-inhibition allows principal cells in CA2 to fire action potentials and to evoke a second long-term depression of inhibition from cholecystokinin-expressing interneurons through activation of cannabinoid type I receptors (CB1). Blockade of CB1 receptors in area CA2 completely prevents social memory formation. Furthermore, CB1-mediated plasticity is strongly reduced in a mouse model of schizophrenia with impaired social memory. Finally, pharmacological manipulation known to improve social memory in these mice also restores CB1-mediated plasticity.

These results highlight how interaction between two inhibitory plasticities plays an important role in social memory formation and reveal new therapeutic targets for pathologies with social cognition impairments.

 

Figure Legend :

In basal condition, synaptic drive between CA3 and CA2 pyramidal neurons (PN) is dominated by a large feed-forward inhibition preventing CA2 PNs to fire action potentials (AP). When a mouse is exposed to a novel mouse, a long-term depression of inhibitory transmission from parvalbumin-expressing interneurons (PV-IN) is induced by activation of Delta-opioid receptors (DOR-iLTD). This disinhibition allows CA2 PNs to fire APs in response to CA3 inputs activation. Following subsequent exposure to the novel mouse, PNs that fire enough APs express a second iLTD mediated by activation of cannabinoid type I receptors (CB1R-iLTD), hence further increasing AP firing in these PNs.

 

de Contributeur 19.09.2022 à 03h28

UNE NOUVELLE BOITE A OUTIL POUR EXPLORER LA DYNAMIQUE DES RECEPTEURS DANS LE CERVEAU

Les progrès sur la compréhension du fonctionnement du cerveau sont intrinsèquement liés aux progrès des méthodes d’investigation. La dynamique des récepteurs de neurotransmetteurs joue un rôle déterminant dans le fonctionnement des synapses et nécessite de nouvelles approches pour être étudiée au niveau de tissus cérébraux intacts. Nous rapportons dans Science Advances le développement d’une boite à outil complète depuis un nouveau modèle animal et un instrument d’imagerie jusqu’aux techniques de marquage et de contrôle de la dynamique des récepteurs qui permet de marquer par fluorescence et manipuler le mouvement des récepteurs dans le cerveau.

Les récepteurs de neurotransmetteurs sont concentrés dans les synapses en face des zones de libération du neurotransmetteur. C’est ce qui permet une transmission synaptique rapide et fidèle. Depuis 20 ans, notre laboratoire en premier en collaboration avec celui d’Antoine Triller, puis de nombreux autres, ont établis que ces récepteurs ne sont en fait pas immobiles dans les synapses mais sont en fait en grande partie très mobiles et échangent en permanence entre les zones synaptiques et extrasynaptiques par diffusion aléatoire (brownienne). C’est un savant équilibre entre cette mobilité et la stabilisation réversible des récepteurs aux synapse par interaction avec des protéines d’échafaudage qui détermine le nombre de récepteurs à la synapse, et détermine ainsi l’efficacité de la transmission synaptique. De plus, de nombreux travaux menés par notre laboratoire et d’autres ont permis de dévoiler l’extrême régulation à laquelle sont soumise ces processus et leurs rôles déterminant dans divers processus physiopathologiques. Nous avons par exemple récemment établi que la diffusion-stabilisation des récepteurs  du neurotransmetteur glutamate de type AMPA est indispensable pour la potentiation des synapses glutamatergiques en réponse à une forte activité synaptique. Ce processus, appelé potentialisation à long terme, semble être un des substrat cellulaire majeur des phénomène de mémoire et d’apprentissage. En support de cet hypothèse, nous avons d’ailleurs établi que le blocage de la mobilité des récepteurs empêche la formation de certaines formes de mémoire. Dans un autre registre, une mobilité anormale des récepteurs semble être impliquée dans les déficits mnésiques observés dans différentes pathologies telles que les maladies d’Alzheimer ou de Huntington.

Il est donc très important de pouvoir étudier ces processus de mobilité des récepteurs et les contrôler, dans un contexte aussi proche de la réalité physiologique. Cependant, les techniques d’imagerie et les outils moléculaires nécessaires pour l’étude de ces phénomènes de mobilité sont depuis longtemps restés essentiellement limités à des systèmes expérimentaux réducteurs que sont les cultures dissociées de neurones. Ces systèmes, même s’ils présentent un intérêt certain, ne reproduisent pas l’intégralité de la complexité d’un tissus nerveux, manquant en particulier de reproduire l’environnement cellulaire et la connectivité du cerveau intact.

Dans le travail publié dans Science Advances, nous avons développé un nouveau modèle de souris génétiquement modifiée et une panoplie d’outils moléculaire et un instrument d’imagerie qui nous permettent maintenant de dépasser cette limite et mesurer et manipuler la mobilité des récepteurs dans le tissus cérébral intact, jusqu’à in vivo. En utilisant le modèle des récepteurs AMPA du glutamate, qui sont sous-jacents à la transmission excitatrice dans le cerveau, nous avons utilisé une technique d’étiquetage de la sous-unité GluA2 de ces récepteur avec une séquence peptidique qui permet l’ajout un résidu biotine en présence de l’enzyme biotine ligase. Dans le modèle de souris que nous avons développé, toutes les sous-unités GluA2 sont étiquetées, mais sont uniquement biotinylée dans les neurones dans lesquels nous exprimons la biotine ligase.  La puissance de cette méthode permet de réaliser un marquage spécifique des récepteurs dans des populations de neurones déterminées. Ce marquage spécifique nous donne d’une part accès à l’utilisation de techniques d’imagerie à haute résolution dans les tissus, et d’autre part nous permet de contrôler la mobilité des récepteurs à l’aide de ligands multivalents de la biotine. Nous présentons de ce point de vue le développement d’une nette amélioration de la technologie d’imagerie par feuille de lumière, qui permet de mesurer la mobilité des récepteurs endogènes dans des tranches de cerveau. Nous appliquons cet ensemble de technologies pour établir que les récepteurs de types AMPA endogènes sont bien mobiles dans le tissus cérébral, ainsi que nous l’avions prédit à partir de nos travaux sur cellules en culture, et que cette mobilité est indispensable pour la potentialisation à long terme et certaines formes de mémoire conditionnelle. Ce nouveau modèle expérimental et cette boite à outil va nous permettre d’une part d’explorer les propriétés et le rôle de la mobilité des récepteurs AMPA et pourra d’autre part être appliquée à tout un ensemble d’autres protéines membranaires tels que d’autres types de récepteurs, canaux ioniques ou des protéines d’adhésion.

Figure: Un modèle de souris transgénique permet la biotinylation enzymatique spécifique des sous-unités endogènes des récepteurs du glutamate. Leur mobilité à la membrane plasmique peut être mesurée ou contrôlée dans le tissu cérébral à l’aide de protéines fluorescentes de liaison à la biotine. La réticulation de ces protéines permet un contrôle spécifique de la plasticité synaptique et du comportement des animaux.

 

English summary:

Advances in understanding how the brain works are intrinsically linked to advances in experimental methods. Neurotransmitter receptor dynamics play a key role in tuning synapse function and require new approaches to be studied at the level of intact brain tissue. In Science Advances, we report the development of a complete toolkit, from a new animal model and imaging instrumentation to molecular techniques for labeling and controlling the dynamics of receptors, that allow fluorescent labeling and manipulation of the movement of endogenous glutamate receptors in the brain.

 

Figure: A biotin acceptor peptide tag (AP tag) knock-in mouse model allows target-specific enzymatic biotinylation of endogenous glutamate receptor subunits. Their surface diffusion dynamics can be measured or controlled in brain tissue using fluorescent biotin binding proteins (BBP). Crosslinking with BBP allows for target-specific control of synaptic plasticity and animal behavior.

 

Contact chercheurs

Daniel Choquet

Directeur de recherche au  CNRS

Institut Interdisciplinaire de Neurosciences et Bordeaux Imaging Center

146 rue Léo Saignat, 33076 Bordeaux Cedex

 

Yann Humeau

Directeur de recherche au  CNRS

Institut Interdisciplinaire de Neurosciences

146 rue Léo Saignat, 33076 Bordeaux Cedex

de Contributeur 07.09.2022 à 05h48

COMPRENDRE LES PLEURS D’UN BEBE N’EST PAS INNÉ !

Quel parent ne s’est pas demandé ce que disent les pleurs de son bébé ? Alors que l’on fait habituellement confiance à un soi-disant « instinct parental » pour comprendre bébé, une étude démontre que s’être déjà occupé de bébés est pourtant indispensable pour interpréter correctement leurs pleurs. Ce résultat témoigne combien l’expérience façonne notre capacité à décoder les informations véhiculées par les signaux de communication des bébés, et de l’importance de s’entraîner pour parvenir à les comprendre. Cette étude, qui vient d’être publiée dans Current Biology, a été menée par des scientifiques de l’Université de Saint-Etienne et de l’Institut universitaire de France.

« Nous avons constaté que la capacité à détecter la douleur exprimée dans les pleurs est modulée par l’expérience que l’on a des bébés », déclare Nicolas Mathevon. « Les parents s’occupant actuellement de jeunes bébés sont ainsi capables d’identifier les pleurs de douleur d’un bébé même s’ils n’ont jamais entendu ce bébé auparavant, alors que des personnes n’ayant aucune expérience préalable des bébés en sont généralement incapables. »

Nicolas Mathevon et ses collègues de l’Université de Saint-Étienne (Siloé Corvin, Camille Fauchon, Roland Peyron et David Reby) ont fait cette découverte dans le cadre d’un programme de recherche visant à déterminer comment les informations sont encodées dans les pleurs des bébés et comment les adultes les extraient. Dans cette étude, ils ont voulu déterminer comment une expérience préalable des bébés influe sur la capacité à identifier les moments où ils souffrent.

Ils ont recruté des personnes ayant une expérience variable des bébés, depuis des personnes sans aucune expérience jusqu’à des parents de jeunes bébés. Ils ont également inclus des personnes ayant une expérience occasionnelle du baby-sitting et des non-parents ayant une expérience professionnelle de soins aux bébés.

Ensuite, ils ont organisé pour tous les participants et participantes une courte phase d’entraînement au cours de laquelle les gens entendaient huit pleurs d’inconfort d’un bébé donné. Ensuite, leur capacité à décoder les pleurs de ce même bébé et ceux d’un bébé inconnu comme étant des pleurs d’inconfort ou de douleur a été mise à l’épreuve.

L’expérience était déterminante : les personnes ayant peu ou pas d’expérience ont classé les pleurs au hasard, sans pouvoir identifier avec certitude lesquels signifiaient la douleur. Ceux qui avaient un peu d’expérience des bébés ont fait légèrement mieux. Les parents de grands enfants et les professionnels des bébés ont su identifier les pleurs d’inconfort et de douleur du bébé avec lequel ils avaient été entrainé. Les grands gagnants ont été les parents de jeunes bébés : ils ont été capables d’identifier les pleurs des bébés connus comme inconnus !

Les résultats montrent que les pleurs des bébés contiennent des informations importantes qui sont codées dans leur structure acoustique. Si les adultes sont sensibles à ces informations, notre capacité à les décoder et à identifier la douleur d’un bébé s’améliore avec l’exposition et l’expérience.

Les scientifiques espèrent que le fait d’en savoir plus sur la façon dont les bébés communiquent la douleur pourra aider les parents à apprendre à la reconnaître et à y répondre encore mieux. Ils mènent actuellement des études de neuro-imagerie afin d’explorer plus avant la manière dont l’expérience et la parentalité influencent l’activité cérébrale lorsque les bébés pleurent.

 

English summary: Deciphering a Babies Cries of Discomfort vs. Pain Comes with Experience

Every parent has wondered what their crying baby is saying. While we usually rely on a so-called « parenting instinct » to understand our babies, a study shows that having cared for babies is a prerequisite for correctly interpreting their cries. The result shows how experience shapes our ability to decode the information conveyed by babies’ communication signals, and how important it is to train to understand them. This study, which has just been published in Current Biology, was conducted by scientists from the University of Saint-Etienne and the Institut Universitaire de France.

“We found that the ability to detect pain in cries—that is, to identify a pain cry from a mere discomfort cry—is modulated by experience of caring for babies,” said Nicolas Mathevon. “Current parents of young babies can identify a baby’s pain cries even if they have never heard this baby before, whereas inexperienced individuals are typically unable to do so.”

The findings show that human’s ability to interpret babies’ cries isn’t innate but learned from experience. Parenting young babies shapes our ability to decode the information conveyed by babies’ communication signals.

Mathevon and his University of Saint-Etienne colleagues (Siloé Corvin, Camille Fauchon, Roland Peyron and David Reby) made this discovery as part of a broader research program investigating how information is encoded in babies’ cries and how human listeners extract this information. In the new study, they wanted to find out how prior caregiving experience with babies shaped the ability to identify when they were in pain.

They recruited people with different amounts of experience caring for babies, ranging from people with no experience at all to current parents of young children. They also included people with occasional experience babysitting and non-parents with more extensive professional experience in caregiving. Next, they gave everyone in the study a short training phase in which they heard eight discomfort cries from one baby over a couple of days. Next, their ability to decode the cries as discomfort or pain was put to the test.

And it turned out that experience was everything. People with little to no experience couldn’t tell the difference between cries any better than chance. Those with a small amount of experience performed slightly better. Current parents and professionals did better than chance. But parents of younger babies were the clear winners. They were able to identify the crying contexts of babies even when they’d never heard the cries of that youngster before. Parents of older kids and those with professional experience didn’t do well with unfamiliar cries.

The findings show that babies’ cries contain important information that’s encoded in their acoustic structure. While adults are attuned to that information, our ability to decode it and identify when a baby is in pain, gets better with exposure and experience.

The researchers hope that learning more about how babies communicate pain may help parents learn how to recognize and respond to it even better. They’re now conducting neuroimaging studies to further explore how experience and parenthood shape brain activity when babies cry.

 

References

Corvin S, Fauchon C, Peyron R, Reby D, Mathevon N, 2022. Adults learn to identify pain in babies’ cries. Current Biology, 32:R807-R827.

Other publications from the Baby cry project:

Bouchet H, Plat A, Levrero F, Reby D, Patural H, Mathevon N, 2020. Baby cry recognition is independent of motherhood but improved by experience and exposure. Proceedings Royal Society London B, 287:20192499.

Levréro F, Mathevon N, Pisanski K, Gustafsson E, Reby D, 2018. The pitch of babies’ cries predicts their voice pitch at age five. Biology Letters, 14:20180065.

Koutseff A, Reby D, Martin O, Levréro F, Patural H, Mathevon N, 2018. The acoustic space of pain: Cries as indicators of distress recovering dynamics in preverbal infants. Bioacoustics, 27:313-325.

Reby D, Levréro F, Gustafsson E, Mathevon N, 2016. Sex stereotypes influence adults’ perception of babies’ cries. BMC Psychology, 4:19.

Gustafsson E, Levrero F, Reby D, Mathevon N, 2013. Fathers are just as good as mothers at recognizing the cries of their baby. Nature Communications 4:1698.

 

 

Contact :

Nicolas Mathevon

ENES Bioacoustics Research Laboratory

Centre de Recherche en Neurosciences de Lyon

CNRS UMR 5292, Inserm UMR_S 1028

Université de Saint-Etienne

23 rue Michelon

42023 Saint-Etienne cedex 2

 

de Contributeur 05.09.2022 à 06h11

ISFTD – Lille – Paris – 2022

The International Society for FrontoTemporal Dementias (ISFTD) has selected Lille to host the 12th biennial congress on frontotemporal dementia (FTD), after Sydney in 2018, Munich in 2016 and Vancouver in 2014.

 

de Clémence Fouquet 29.08.2022 à 03h29

Les Synapses Pivot à Dopamine dans le striatum : un nouveau point névralgique pour la neuromodulation par la dopamine ?

Comment s’organise la conversation entre les neurones dans le cerveau ? Au travers de 2 articles récents nous décrivons une partie de cette organisation aux synapses entre les neurones à dopamine et les neurones environnants. Les synapses, points de contact entre les neurones, sont fondamentale pour le bon fonctionnement du cerveau. On peut distinguer deux grands types de neurones. Les neurones effecteurs assurent une transmission rapide et locale de l’information soit excitatrice soit inhibitrice, tandis que les neurones modulateurs, peu nombreux, affectent de grandes régions du cerveau sur de plus longues durées. Les neurones modulateurs utilisant la dopamine sont très importants pour la régulation du contrôle moteur, de la motivation et de la perception d’une récompense.

Dans nos études, nous avons établi la première purification sélective des synapses dopaminergiques du striatum qui nous a permis d’identifier 2650 protéines, dont 57 spécifiquement enrichies. En revanche, peu d’ARN messagers (codant les protéines) sont sélectivement détectés, suggérant que la traduction locale des protéines n’est pas un mécanisme majeur au niveau des axones des neurones dopaminergiques. De plus, nous avons identifié une nouvelle structure où les synapses dopaminergiques interagissent physiquement avec d’autres synapses classiques et affectent la composition de ces dernières. Ces « Synapses Pivot à Dopamine » pourraient constituer un support important de la neuromodulation par la dopamine sur les circuits neuronaux du striatum, alimentant le débat entre modèles volumiques et synaptiques de la transmission modulatrice. Dans ce nouveau cadre conceptuel, les recherches futures permettront de comprendre en détail les mécanismes cellulaires par lesquels la dopamine module les mouvements volontaires ou l’apprentissage basé sur la prédiction de la récompense. Ceci est d’autant plus crucial que de nombreuses pathologies telles que la maladie de Parkinson, l’addiction et la schizophrénie semblent directement liées à une dysfonction dopaminergique.

Figure : Synapses Pivot à dopamine isolées par tri activé par fluorescence. A : terminaisons synaptiques dopaminergiques isolées (vert) liées à des terminaisons positives pour le GABA (haut, magenta), le glutamate (milieu, magenta) ou l’acétylcholine (bas, magenta). Barre d’échelle 1µm. B : Exemple de synaptosome pivot à dopamine visualisé par microscopie électronique C : Modèle cartographique des synapses du hub de la dopamine. DR/D2R : Récepteurs de la Dopamine ; CAM : Molécule d’Adhésion Cellulaire : Th : Tyrosine hydroxylase (biosynthèse de la dopamine).

 

 

English summary: Dopamine Hub Synapses in the striatum: a new hot spot for dopamine transmission?

How is the conversation between neurons organized in the brain? Through 2 recent articles we describe part of this organization between the dopamine and surrounding neurons at synapses. Synapses are points of contact between neurons, essential for the proper functioning of the brain. In the brain, neurons are of 2 main types. The effector neurons ensure a rapid and local transmission of information, either excitatory or inhibitory, while the modulatory neurons, few in number, affect large regions of the brain over longer periods of time. Modulatory neurons using dopamine are very important for the tuning of motor control, motivation and reward perception.

In our studies, we established the first selective purification of dopaminergic synapses in the striatum that allowed us to identify 2650 proteins, 57 of which were specifically enriched. In contrast, few messenger RNAs (encoding proteins) are selectively detected, suggesting that local translation of proteins is not a major mechanism at the axons of dopaminergic neurons. In addition, we have identified a new structure where dopaminergic synapses physically interact with other classical synapses and affect the composition of the latter. These « Dopamine Hub Synapses » may mediate dopamine neuromodulation on striatal neuronal circuits, fueling the debate between volume and synaptic models of modulatory transmission. Within this new conceptual framework, future research will provide a detailed understanding of the cellular mechanisms by which dopamine modulates voluntary movements or reward-prediction based learning. This is crucial as many pathologies such as Parkinson’s disease, addiction and schizophrenia are linked to dopamine dysfunction.

Figure : Dopamine hub synapses isolated by fluorescence activated sorting. A: Isolated dopamine synaptic terminals (green) bind to GABA (top, magenta), Glutamate (middle, magenta) or Acetylcholine (bottom, magenta) positive terminals. Scale bar 1µm. B: Example of dopamine hub synaptosome observed at the electron microscope. C: Model cartoon of dopamine hub synapses. DR/D2R : Dopamine Receptors; CAM: Cell Adhesion Molecule: Th: Tyrosine hydroxylase (dopamine biosynthesis).

Références :

Paget-Blanc, V., Pfeffer, M.E., Pronot, M. et al. A synaptomic analysis reveals dopamine hub synapses in the mouse striatum. Nat Commun 13, 3102 (2022). https://doi.org/10.1038/s41467-022-30776-9

Hobson, BD., et al. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Reports, 38-2, (2022) https://doi.org/10.1016/j.celrep.2021.110208.

 

Contact :

Etienne Herzog
CNRS CRCN
Team Membrane Traffic at Synapses

Université de Bordeaux
Interdisciplinary Institute for NeuroScience – UMR 5297
Centre Broca Nouvelle-Aquitaine
146 rue Léo Saignat
CS 61292 Case 130
33076 Bordeaux Cedex (FRANCE)

Phone: +33 (0) 5 33 51 47 79

de Contributeur 21.06.2022 à 07h46

EBRAINS Research Infrastructure symposium FENS satellite Meeting

The EBRAINS FENS satellite event, « EBRAINS Research Infrastructure Symposium: addressing grand challenges in brain research », aims to bring together experimental, clinical and computational neuroscientists.

We will highlight the connections between basic and clinical neuroscience and computational neuroscience. The program is be structured around four sessions on why, what, how and where to integrate multi-resolution and multi-scale data for neuroscience research.

The symposium will be held on Friday July 8, from 8:30 to 17:30 (standing lunch included).

Registration is free but mandatory (REGISTER NOW).

More information on EBRAINS website.

de Contributeur 07.06.2022 à 03h20

Caféine : ses effets moléculaires décryptés dans le cerveau

Des chercheurs de l’Inserm/Université et CHU de Lille et du CNRS/Université de Strasbourg décryptent les mécanismes moléculaires qui sous-tendent les effets de la caféine dans le cerveau. Ces travaux, réalisés chez la souris et publiés dans la revue The Journal of Clinical Investigation, renforcent l’idée d’un effet bénéfique de la caféine sur les fonctions cognitives.

La caféine est la substance psychoactive la plus consommée au monde. Alors que ses effets sur la vigilance et l’attention sont largement connus, les mécanisme moléculaires cérébraux associés à sa consommation régulière demeuraient peu connus jusqu’à présent.  Le Dr. David Blum du laboratoire « Alzheimer & Tauopathies » du centre de recherche Lille Neuroscience & Cognition (Inserm/Université Lille/CHU de Lille) en collaboration avec le Dr. Anne-Laurence Boutillier du laboratoire de neurosciences cognitives et adaptatives (CNRS/Université de Strasbourg) vient de démontrer, chez la souris, qu’une consommation habituelle de caféine induit des changements moléculaires durables dans l’hippocampe, une structure essentielle à la mémoire et qui dégénère dans la maladie d’Alzheimer. Les résultats montrent notamment que la caféine modifie de manière très importante l’épigénome hippocampique de manière différenciée selon qu’il s’agisse des cellules neuronales ou non-neuronales. Cela concourrait à favoriser le traitement de l’information en réponse à une tache d’apprentissage, en exerçant une action concertée sur les cellules neuronales et non-neuronales.

Cette étude fait écho aux travaux précédents du laboratoire Alzheimer & Tauopathies suggérant un impact bénéfique de cette molécule dans le contexte de la maladie d’Alzheimer et à l’essai clinique de phase III en cours (CAFCA).

 

English summary

Caffeine is the most widely consumed psychoactive drug. However, there is a striking mismatch between the epidemiological evidence associating the regular intake of caffeine with benefits for chronic brain disorders and the molecular clarification of the impact of caffeine on brain function. Herein, using a combination of different non-hypothesis driven-omic approaches, we show that, in the bulk tissue analysis, chronic caffeine treatment reduced metabolic processes related to lipids, mitochondria and translation in the mouse hippocampus, some of which were identified at the different molecular levels analyzed, i.e. epigenome, transcriptome, proteome and metabolome. In sharp contrast to what was observed in bulk tissue, we found that caffeine induced a neuronal autonomous epigenomic response related to synaptic plasticity activation. These data were corroborated by the fact that caffeine treatment induced an increase in glutamatergic synapse proteins in the hippocampus and ultimately, enhanced transcriptomic regulations in response to learning. Overall, our data prompt the novel concept that regular caffeine intake promotes a more efficient ability of the brain to encode experience-related events. By coordinating epigenomic changes in neuronal and non-neuronal cells, regular caffeine intake promotes a fine-tuning of metabolism in resting conditions, likely improving neuronal activity in response to learning.

 

Source

Paiva I, Cellai L, Meriaux C, Poncelet L, Nebie O, Saliou JM, Lacoste AS, Papegaey A, Drobecq H, Le Gras S, Schneider M, Malik EM, Müller CE, Faivre E, Carvalho K, Gomez-Murcia V, Vieau D, Thiroux B, Eddarkaoui S, Lebouvier T, Schueller E, Tzeplaeff L, Grgurina I, Seguin J, Stauber J, Lopes LV, Buée L, Buée-Scherrer V, Cunha RA, Ait-Belkacem R, Sergeant N, Annicotte JS, Boutillier AL, Blum D (2022) Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI149371

 

Contact chercheurs

David Blum
Directeur de recherche Inserm
Lille Neuroscience & Cognition
UMR-S 1172 (Inserm/ Univ. Lille/CHU Lille)
Equipe « Alzheimer & Tauopathies » – LabEx DISTALZ
Tél : 06 50 82 04 90

Anne-Laurence Boutillier
Directrice de recherche Cnrs
UMR7364 (Cnrs/université de Strasbourg)
Equipe « Epigenetics & Memory dynamics »
Tél : 03 68 85 19 34

de Contributeur 20.05.2022 à 05h55

International Congress for FrontoTemporal Dementias

The city of Lille is pleased to host the 12th biennial congress of the ISFTD from November 2 to 5, 2022 in Lille Grand Palais after having been held in the cities of Syndey, Munich or Vancouver.

This congress, preceded by a symposium at the Paris Brain Institute, will be an opportunity to bring together clinicians, researchers, psychologists, nurses and students to advance the understanding of frontotemporal dementia.

This event will also be an opportunity for caregivers to meet on Friday, November 4th, for a day dedicated to them in parallel with the medical-scientific sessions.

For more information, please visit our website.

de Clémence Fouquet 05.05.2022 à 06h28