Comment le système de récompense module les réactions de peur? par Contributeur 30.09.2022 à 09h03
Le stress est un moteur essentiel de l’adaptation et la réponse au stress d’un organisme est généralement bénéfique car elle favorise la survie. En cas de danger, le cerveau orchestre la détection et la réponse aux stimuli aversifs environnementaux et guide ainsi la sélection de la stratégie d’adaptation la plus appropriée parmi un répertoire diversifié de comportements défensifs. Ces comportements innés et acquis ont été façonnés par la sélection naturelle et conservés à la fois chez les invertébrés et les vertébrés. Ils comprennent des stratégies passives telles que le « freezing » (ou immobilité) et des réponses actives « fight or flight » (combat ou fuite), et le passage entre ces modes passifs/actifs est essentiel pour la flexibilité comportementale. Le freezing est une réponse universelle à la peur caractérisée par une absence totale de mouvement, à part la respiration, due à une posture corporelle tendue lorsqu’une menace est rencontrée. Le freezing est essentiel dans les processus de gestion du stress, car il correspond à un état d’hypervigilance qui permet de prendre des décisions et, par conséquent, d’élaborer la stratégie comportementale la plus pertinente. Bien que le freezing soit pertinent pour l’étiologie des troubles liés à la peur tels que les troubles de stress post-traumatique, les attaques de panique et les phobies sociales, les circuits neuronaux et les substrats cellulaires sous-jacents sont loin d’être bien compris.
Pour aborder cette question, nous avons combiné des approches par électrophysiologie ex vivo et in vivo couplées à des outils de pharmaco- et optogénétiques complétées par des analyses par microscopie. Nous avons utilisé un modèle préclinique d’exposition à un stimulus aversif et mesurer les réponses immédiates de freezing. Nous avons mis en évidence de nouvelles structures clefs modulant ce comportement de défense. Ces structures cérébrales relient les neurones GABAergiques du tegmentum latéro-dorsal (LDTg) qui projettent vers l’aire tegmentale ventrale (ATV), une structure bien connue pour son rôle dans les réponses liées à la récompense. Au sein de l’ATV, ce sont également les neurones GABAergiques de projection qui transmettent ensuite cette information à l’amygdale cérébrale. L’activation du triumvirat LDTg-ATV-Amygdale par des événements aversifs permet de mieux comprendre les processus cérébraux d’adaptation au stress. Ces résultats remettent notamment en question la vision acceptée de l’axe LDTg-ATV qui a été historiquement lié à la récompense et aux processus de renforcement.
Référence :
A non-canonical GABAergic pathway to the VTA promotes unconditioned freezing
Loïc Broussot 1, 2*, Thomas Contesse 1, 2*, Renan Costa-Campos1, 2, Christelle Glangetas3, Léa Royon 1, 2, Hugo Fofo 1, 2, Thomas Lorivel 2, François Georges 3, Sebastian P. Fernandez 1, 2, 4 and Jacques Barik 1, 2, 4.
1 Université Côte d’Azur, Nice, France.
2 Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France.
3 Université de Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France.
4 Co-last and co-corresponding authors.
Légende de la figure :
Gauche : coupe coronale de cerveau contenant la région du noyau latérodorsal du tegmentum (LDTg) ; les neurones GABAergiques de cette structure sont identifiables grâce à l’expression restreinte de la protéine fluorescente mCherry. Centre : schéma d’un cerveau en 3D de souris permettant de visualiser le circuit neuronal (LDTg->VTA->Amygdale) identifié dans l’étude Broussot et al., mettant en évidence son rôle dans la modulation du comportement de freezing chez l’animal vigile (droite).
Contact :
Jacques Barik
Maitre de Conférences, Université Côte d’Azur
barik@ipmc.cnrs.fr
04 93 95 34 43
Institut de Pharmacologie Moléculaire et Cellulaire
CNRS – Univesité Côte d’Azur.
660 route des Lucioles
06560 Sophia Antipolis, Valbonne
English Summary
Stress is a key motor of adaptation The stress response is mostly beneficial as it promotes survival. In the event of danger, the brain orchestrates the detection of and response to aversive environmental stimuli and thus guides the selection of the most appropriate coping strategy from a diverse repertoire of defensive behaviours. These innate and acquired behaviours have been shaped by natural selection and conserved in both invertebrates and vertebrates. They include passive strategies such as freezing and active ‘fight or flight’ responses, and switching between these passive/active modes is essential for behavioural flexibility. Freezing is a universal fear response characterised by a complete absence of movement, apart from breathing, due to tense body posture when a threat is encountered. Freezing is essential in stress management processes, as it corresponds to a state of hypervigilance that allows for decision making and, consequently, the development of the most appropriate behavioural strategy. Although freezing is relevant to the etiology of fear-related disorders such as post-traumatic stress disorder, panic attacks and social phobias, the underlying neural circuitry and cellular substrates are far from being well understood.
To address this issue, we combined ex vivo and in vivo electrophysiology approaches coupled with pharmaco- and optogenetic tools complemented by microscopy analyses. We used a preclinical model of exposure to an aversive stimulus and measured the immediate freezing responses. We identified new key structures modulating this defensive behaviour. These brain structures connect GABAergic neurons in the lateral-dorsal tegmentum (LDTg) that project to the ventral tegmental area (VTA), a structure well known for its role in reward-related responses. Within the VTA, it is also the GABAergic projection neurons that then transmit this information to the amygdala. The activation of the LDTg-ATV-Amygdala triumvirate by aversive events provides a better understanding of the brain’s processes of adaptation to stress. In particular, these results challenge the accepted view of the LDTg-ATV axis, which has historically been linked to reward and reinforcement processes.