Le cervelet stabilise notre carte mentale par Contributeur 22.07.2019 à 12h48
Savoir s’orienter pour trouver son chemin vers une destination donnée est une fonction essentielle à chaque être vivant. Fermez les yeux à l’endroit où vous vous trouvez et visualisez l’endroit où vous souhaitez aller. Une image de l’environnement et le chemin à prendre viennent de se former mentalement, suggérant que notre cerveau construit des représentations mentales de notre environnement et des capacités de calcul qui lui permettent de répondre comportementalement à ces questions. L’étude de la cognition spatiale offre ainsi un cadre de travail qui s’attaque à un problème passionnant mais complexe. En effet, les informations sensorielles sont multimodales et proviennent aussi bien de l’environnement que du déplacement du navigateur. Par conséquent, comment le cerveau traite-t-il l’ensemble de ces signaux sensoriels afin de générer une représentation du monde cohérente d’une part et produire un déplacement efficace du navigateur d’autre part? Plusieurs décennies de recherche ont révélé dans l’hippocampe et plusieurs structures anatomiquement connectées, l’existence de neurones dont l’activité est modulée par l’espace : les cellules de lieu et de grille ainsi que celles de direction de la tête ou encore de bordure. L’ensemble de ces neurones forme une représentation neurale du monde qui nous entoure. Cependant une question clef demeure non résolue : comment cette représentation mentale, appelée également carte spatiale, est-elle maintenu stable alors que nous nous déplaçons continuellement ?
Les nouveaux travaux scientifiques de l’équipe Cervelet, Mémoire et Navigation (Sorbonne Université, Institut de Biologie Paris Seine, Neurosciences Paris Seine, UMR CNRS 8246, INSERM 1130, Paris) apportent un éclairage important à cette question. Les chercheurs de cette équipe ont en effet démontré que le cervelet, une structure cruciale pour l’intégration sensori-motrice, permet de stabiliser l’orientation de la carte spatiale formée au sein de notre hippocampe.
Les chercheurs ont enregistré l’activité des cellules de lieux de l’hippocampe chez des souris transgéniques présentant un déficit de potentialisation des cellules de Purkinje du cervelet. Ils ont observé que la capacité des souris mutantes à maintenir une orientation stable de leur représentation spatiale est altérée lorsque les souris explorent un environnement familier. L’analyse de leur comportement a révélé par ailleurs que lorsque la carte spatiale présente une orientation anormale, les souris explorent davantage l’objet présent dans leur environnement comme si celui-ci leur paraissait déplacé, suggérant un déficit d’orientation des souris. Ainsi, lorsque ces souris sont testés dans la piscine de Morris, un labyrinthe aquatique permettant de tester les capacités d’apprentissage et de mémoire spatiale, elles montrent non seulement des performances plus variables mais aussi des capacités de localisation du but et d’orientation moins précises que les souris contrôles. Ces données, complémentaires de travaux précédents de l’équipe (Rochefort et al., 2011) révèlent un rôle crucial du cervelet dans la cognition spatiale et indiquent que la façon dont le cervelet influence l’activité des cellules de lieux est multiple et dépend du type de plasticité engagée.
Ce résultat fait écho à une autre étude récemment publiée par l’équipe dans laquelle les voies anatomiques par lesquelles le cervelet pourrait influencer l’hippocampe ont été identifiées Les auteurs ont ainsi montré qu’il existe plusieurs sous-régions du cortex cérébelleux anatomiquement connectées à l’hippocampe. Ces sous-régions présentent également une interaction physiologique avec l’hippocampe dont la dynamique dépend de la tâche comportementale réalisée (Watson et al., eLife, 2019).
Contacts chercheurs :
Christelle Rochefort
Laure Rondi-Reig
Sorbonne Université
Institut de Biologie Paris Seine
Neurosciences Paris Seine
UMR CNRS 8246, INSERM 1130, Paris
Référence
Lefort JM, Vincent J, Tallot L, Jarlier F, De Zeeuw CI, Rondi-Reig L* and Rochefort C* (2019). Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation, Nat Commun. 10(1):2251
Watson* Obiang* Torres-Herraez*, Watilliaux, Coulon, Rochefort and Rondi-Reig (2019). A neural framework for cerebellar contributions to navigation processes, Elife. 17;8. pii: e41896
Autres références :
Rochefort C.*, Arabo A.*, André M., Poucet B., Save E*. and Rondi-Reig L* (2011). Cerebellum Shapes Hippocampal Spatial Code. Science, 334, 385-389