Activité cérébrale lors de tâches complexes révélée par la neuroimagerie ultrasonore ultrarapide

L’électrophysiologie, plus récemment les mesures optiques mais également les techniques d’imageries magnétiques, ont permis d’enregistrer des évènements associés directement ou indirectement à l’activité neuronale. Ces techniques bien que très performantes ont chacune des échantillonnages temporels et/ou spatiaux limités. C’est le cas spatialement de l’électrophysiologie qui par le nombre de micro-électrodes ainsi que la surface des contacts pour les enregistrements sont limités quant aux régions étudiées. Cette contrainte spatiale est également problématique pour les méthodes optiques du fait de la diffraction de la lumière qui limite la zone d’enregistrement de l’activité neuronale d’intérêt.
À l’opposé de ce spectre spatial, les techniques d’imageries fonctionnelles peuvent enregistrer une adaptation métabolique à l’échelle du cerveau dans son ensemble, mais avec des compromis de sensibilité et de résolution temporelle tout à fait limitante (de l’ordre de plusieurs secondes en comparaison de quelques millisecondes pour l’électrophysiologie).

Le développement récent de techniques d’imagerie ultrasonores neuro-fonctionnelles basées sur les mesures de doppler ultra-rapide (fUltrasound imaging) offrent un nouvel et unique moyen de quantifier les variations hémodynamiques cérébrales à haute résolution spatiale (100microns) et haute résolution temporelle (10msec). Chez le rongeur, cette technique a permis de révéler une sensibilité de signal sur bruit tout à fait intéressante. En revanche, la capacité de cette technique de révéler la dynamique spatiotemporelle de réseau dans le cadre de stimuli endogènes mis en jeu chez des animaux avec un cerveau de plus grande taille comme le primate lors de taches complexes n’a pas encore été démontrée.
Dans le cadre d’une étude récente nous avons démontré l’utilité de la technique d’imagerie ultrasonore capable de capturer instantanément (10ms) les changements métaboliques de région corticale et sous corticale chez le macaque effectuant des tâches cognitives complexes (Antisaccade, Estimation de durée etc…). De manière surprenante, la neuroimagerie ultrasonore est capable de suivre la propagation de l’information cérébrale d’une couche à une autre dans le cortex ainsi que d’apporter une information causale et directionnelle sur la propagation de l’activité cérébrale d’une zone à une autre.

 

Référence

Dizeux A, Gesnik M, Ahnine H, Blaize K, Arcizet F, Picaud S, Sahel JA,  Deffieux T, Pouget P, Tanter M. Functional ultrasound imaging of the brain
reveals propagation of task-related brain activity in behaving primates. Nat Commun. 2019 Mar 28;10(1):1400. doi: 10.1038/s41467-019-09349-w.

 

Contact chercheurs

Pierre Pouget, INSERM 1127, CNRS 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France

Contact

Mickael Tanter, Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France

Contact

Actualité